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Abstract—The influence of distributed and/or localized imperfections on the buckling load is
analysed within the framework of cellular bifurcation theory. We propose analytical formulae for
the reduction of the critical buckling pressure of those shells in the presence of various types of
imperfections.

1. INTRODUCTION

The buckling analysis of thin cylindrical shells gave rise to a number of studies. These
structures are frequently used in acronautics and in mechanical, nuclear and civil engin-
ecring. Several recent books are devoted to theoretical, numerical and experimental devel-
opments about perfect and imperfect thin cylindrical shells (Yamaki, 1984 ; Bushnell, 1985 ;
Arbocz et al., 1987 ; Dubas and Van Dc Pite, 1987 ; Hui et al., 1989).

The most important feature of curved shells is their high imperfection sensitivity. In
this paper, we propose closed form formulae to predict buckling of cylindrical shells under
external pressure in the presence of various types of imperfections.

The classical post-buckling theory (Koiter, 1945; Thompson and Hunt, 1973 ; Budi-
ansky, 1974 ; Potier-Ferry, 1987) can be used for imperfect structures if the number of
buckling modes is finite. Using the Lyapounov~Schmidt method, these theories lead to
algebraic amplitude equations. In the case of a single buckling mode of an unstable bifur-
cation and in the presence of an imperfection of amplitude a,, one gets a reduction of the
critical load which is proportional to a3’°.

For pressurized thin cylindrical shells the buckled states have a cellular shape in the
circumferential direction, with a rather large azimuthal wavenumber n. Thus many buckling
modes are nearly coincident and their non-linear interaction must be accounted for in an
imperfection sensitivity analysis. This interaction between different wavenumbers can lead
to spatial variation of the amplitude of the post-buckling pattern, which is modelled by a
complex differential equation. This equation is nowadays referred to as the Ginzburg-
Landau equation. It was first obtained in the study of convective rolls (Segel, 1969 ; Newell
and Whitehead, 1969). The effect of localized imperfections on the buckling load can be
analysed by using the Ginzburg-Landau equation (Amazigo et al., 1970; Amazigo and
Frazer, 1971 ; Damil and Potier-Ferry, 1991). In their study of a beam buckling problem,
Amazigo et al. (1970) established that the amplitude of the buckling pattern has a dis-
continuous derivative in the region where the localized imperfection is significant. This
leads to a reduction of the critical load proportional to the amplitude q; of the localized
imperfection.
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In a previous paper (Damil and Potier-Ferry, 1991) we established that any cellular
instability problem is governed by amplitude equations of the Ginzburg-Landau type. We
also showed how to account for distributed and or localized imperfections. In particular,
we have extended to any cellular instability problem the localized imperfection analysis due
to Amazigo er al. (1970). Moreover, the coefficients of these equations and the cor-
responding discontinuities are obtained in closed form, which permits their analytical
computation,

This method will be used in this paper to calculate the maximal pressure of circular
cylindrical shells which have a large geometrical Batdorf parameter Z in the presence of
distributed and, or localized imperfections.

[n order to get closed form formulae for the reduction of critical pressure, we shall use
an additional approximation. Indeed, the buckling modes of cylinders under external
pressure are nearly inextensional and are more rapidly varying in the circumferential
direction than in the axial direction. From these facts Abdelmoula and Potier-Ferry (1991)
established an approximate buckling analysis that is valid for sufficiently large values of
the Batdorf parameter. The present non-linear analysis will be carried out within this
approximation.

2. DONNELL EQUATIONS AND INEXTENSIONAL APPROXIMATION

We consider a ciccular cylindrical shell of radius R, length L and thickness &, which is
made of a homogencous, isotropic elastic material with Young's modulus £ and Poisson’s
ratio v. It is subjected to an external normal pressure P. The coordinate system is taken as
shown in Fig. | and the displacement components will be denoted by u, v and w.

Within Donnclt theory and if the pre-buckling rotations are neglected, in the presence
of an initial displaccment d(x, v). the transverse displacement w(x, v) and the additional
stress function f(x, p) are solutions of

DAY= 3} f+PR <§0;w+0fw>— bw, f]1+ PR (;0;d+a_;d>—[d, f1=0
- (hH
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where 2 is equal to 1 or 0 depending on the application of P on the whole of the boundary
or only on the lateral part. We use the following notation:
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Fig. . Cylinder subjected to uniform external pressure.
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The stress function f'is related to the resultant stress by
Nx = aff' Ny = axzﬂ ny = _asvf

Different boundary conditions at x = — L/2 and x = L/2 are considered (C is clamped and
S is simply supported) :

Cl:w=dw=u=v=0 St:w=0w=u=0v=0
C2:w=dw=u=N,=0 S2:w=0w=u=N,=0
Cl:w=dw=N,=v=0 S3:w=dw=N,=v=0
C4:w=0w=N, =N, =0 S4:w=0dw=N,=N,=0. (2)

The buckling mode of the pressurized cylindrical shell satisfies the linearized equations

DAzw—-laff+PR(zafw+afw =0

R 2

| | (3)
Doarpy Lo

EhA f+ R(?,w 0.

The classical harmonic solutions of eqn (3) have a slower variation in the axial direction
than in _the circumferential direction for large geometrical Batdorf parameter
Z = /1=vIL*Rh (Z 2 500). These buckling modes have a large circumferential wave-
number and are nearly inextensional, that is, the membrane buckling strain is weak. From
these facts, Abdelmoula and Potier-Ferry (1991) established an approximate buckling
analysis. This leads to neglect of d/0x with respect to d/dy, except in the coupling terms
2% fand d;w. Thus the mode and the buckling pressure can be approximated by the solutions
of:

1
Doyw— -k-aff+ PRA}w=0 @

. 1,
Ezayf-f- Ea_,w =0.
This implies a loss of two boundary conditions and the existence of boundary layers.
Within this approximate analysis, it has been established that the boundary conditions for

the approximate system (4) can be stated as follows, according to the boundary conditions
(2) of the exact system:

1. If there is no axial restraint (N, = 0)

w(i'g,y)=0 and f(i%.y)=°- ®



4 R. ABDELMOULA e! al.

2. If there 1s an axial restraint (u = 0)

L L
w(i ;,_v) =0 and 5,w<i ;.}‘) = 0. (6)

In the present non-linear analysis, this approximation will be used in order to get closed
form formulae for the reduction of critical pressure in the presence of imperfections. We
also neglect ¢/éx with respect to ¢/Cy in the non-linear equations (1). The post-buckling
behaviour is then governed by the approximate equations:

1 2 3 ¥
Da}w— —0; f+PRO;w—[w, f1+PR:G}d=0

U, U
Z.‘hayf'*‘k;@.rw— 1w w]

with the boundary conditions (5) or (6). We have neglected the higher order terms [d, f]
and {d. w]. The solutions of eqns (7) are extrema of the following Reissner-type functional :

l 2, , 1
F(P.w,[)= %J; {D(éfw)z— ﬁ(ﬁ_ff)z— E@;fw—PR(é_,.w)'}dxd - EL [w, flwdxdy

®)

where Q = [—L/2, L/2] x [0, 2= R]. This functional will be used to computce the imperfection
sensitivity factor b.

For the shells considered, the buckling mode has a cellular shape in the circumferential
direction. Furthermore, the wavenumber n is rather large provided that the ratio L/R is not
too large (otherwise Donnell shell theory would not be valid). Therefore classical bifurcation
theory is only relevant to get exactly periodic patterns. So we shall apply cellular bifurcation
theory in order to account for non-periodic imperfections and for non-periodic solutions.
To fit with the framework of cellular bifurcation theory, let us rewrite the post-buckling
problem (7) as follows :

du
(T=F(P,u)+G(y) )
)

where we have put

(w, fL83w. 0} f.0,w,0,f,0}w. 0] f}

——
c

= {5,,52.55, 54,85, 56,57, 5% | (10a)
tf l l SN2 a2 a2 20
{F} = 35,56‘57’5,,,&,.94,5 R iS1— PRy +5,075, +5,0:5,—20.550.5¢ .
l 2 2 *
Eh(— E&;s, — 0585153+ 5(8,.:5)')} (10b)
, PR _,
{G(»} = 10,0,0,0,0,0, — ~5-5;d(x. ), 0 (10c)

where F(P,u) is a non-linear operator which depends on the axial variable x. The vector
G(y) accounts for initial imperfections, and ‘{u} denotes the transpose of a column vector.



Buckling of cylindrical shells under external pressure 5

3. CELLULAR INSTABILITIES

3.1. Basic features

In order to apply the classical perturbed bifurcation theory (Koiter, 1945; Thompson
and Hunt, 1973 ; Budiansky, 1974 ; Potier-Ferry, 1987) it is required that, at the bifurcation
load P., the number of buckling modes is finite, in which case the Lyapounov-Schmidt
method leads to algebraic amplitude equations. In the case of a single buckling mode of an
unstable symmetric bifurcation and in the presence of an imperfection of amplitude a,, the
amplitude equation has the following form:

(P— P a+250a° + Pay, = 0. (1

The numerical coefficients «, , and 2, are related to the perfect structure, the loading and the
boundary conditions. Within the classical theory, a simple formula yields the imperfection
sensitivity factor b = —a;q/x,; as a function of the buckling mode and of the potential
energy. The coefficient § is somewhat like a projection of the imperfections on the buckling
mode. From (11), one finds a maximal load P, which is lower than P,, the corresponding
reduction of the critical load being proportional to (as)**.

In the case of a cellular bifurcation, the algebraic equation is replaced by a complex

differential equation of the Ginzburg-Landau type (here without imperfection) :

d? 3
dj_f; +(P—P)aa+ayalal* = 0 (12)

which permits one to account for spatial variations of thc amplitude of the post-buckling
patterns. The coefficients 2, and a, are real and they are to be computed in each problem.
The influence of localized imperfections on buckling load can also be studied by this
equation, as established by Amazigo et al. (1970).

3.2. General framework

In a previous paper (Damil and Potier-Ferry, 1991), we established that for any cellular
instability problem, the instability pattern is governed by amplitude equations of the
Ginzburg-Landau type with new terms that account for imperfections. In this method, the
perturbed Ginzburg-Landau equation and the jump condition due to localized imper-
fections are given by general formulae.

We have considered a general differential equation of the form:

d
a;:F(P,u)-i-aoGo(y)ﬁ-anGl()’) 13)

where y lies in an interval whose length is large with respect to the wavelength and P is the
real control parameter (here the pressure). [t is clear that Donnell equations (1) or approxi-
mate Donnell equations (7) can be written in this form [see eqn (9)].

In what follows, we distinguish between distributed imperfections and localized imper-
fections, the latter being significant in a small region of the shell, say one or two buckles.
We have denoted the amplitude of the distributed imperfection by a,, its shape by Go(y),
the amplitude of the localized imperfection by a,, and its shape by G,(y).

Our general results can be expressed only in terms, first of the factor 4 of the non-
linear classical bifurcation theory and second of the lincar bifurcation problem. A cellular
bifurcation occurs when the linear part L(P) of the operator F has a double but not semi-
simple eigenvalue on the imaginary axis. We denote by U, and V., the corresponding
eigenvectors:
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L(P)U. = ig. U,
L(P)V.=iq.V.+U..
Note that the applicability of this general theory requires a mirror symmetry y —» —y.
3.3. Perturbed Ginzburg—Landau equation
We limited ourselves first to localized imperfection around y = 0, which means that

G,(y) decays for large y, and second to distributed imperfections that are nearly periodic
with the critical wavenumber

I & ,
Go(y) =3 ZO (8.(¥) €™ +c.c.) (14)

where c.c. denotes the complex conjugate, the functions g,(y) being slowly variable. Within
this framework, we established (Damil and Potier-Ferry. 1991) that the bifurcation equation
is the perturbed Ginzburg-Landau equation:

u(y) = a(y)U, e“* 4-cc.+- - (15

d3a ,
@7+(P“Pc)ala‘*‘“zalal"*ﬂl(ﬁao=0- (16)
Next the localized imperfection induces a jump in the complex amplitude:

da da . da  _ _
[d.}"(o):l=$’(0 )-a}(0 ) =714, )

All the real coeflicients a,, a5, 7, and the function #,(y) are given by general explicit
formulae:

d:pP
a =2/3‘;7(¢1c) (18)
%:—mb=m?9 (19)
11

1 <g:(»), U

R R AT 20)
_(Gu(=g).UD
SN e
duU
Vo= ~igta) @

where (-, ) is a hermitian product and U?is the kernel of the adjoint operator L*(P.) +ig..
From these formulae, it is clear that the coefficient «, is only deduced from the neutral
stability curve P(q) that follows from the eigenvalue problem:

L(P)U, = iqU,. (23)

The function f,(y) is related to the linear stability problem (23) and to the distributed
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imperfection. The coefficient y, is related to the linear stability problem (23) and to the
Fourier transform of the localized imperfection

+ o

Gi(w) = _[ G (y) e dy (24)

-0

and x, is related to the standard imperfection sensitivity factor b.

4. INTERACTION OF DISTRIBUTED AND LOCALIZED IMPERFECTIONS

In this section we calculate the reduction of the critical load in the presence of both
localized and distributed imperfections by solving the amplitude equation analytically.

In the case of a subcritical bifurcation, an imperfection transforms the bifurcation
point (P.,0) into a limit point (P,,.a,), P, being lower than P.. The maximal load P,, will
be deduced from the amplitude equation (16) together with the jump relation (17) at y = 0.
Let us assume that §, is constant (as for instance with a modal imperfection). We seek only
symmetric solutions with respect to the y-axis so that a(y) is real. Hence a(y) satisfies the
following equations :

d:
cﬁz‘ +a,(P—Plataa’+a,B, =0 (25)
da(0)
dy = Zzlap (26)

Hence egqns (25) and (26) govern the evolution of the amplitude a( y). We seck solutions
such that the amplitude is constant at infinity, i.e. out of the region where the localized
imperfection is significant

@’ (0) =0, a(c)=R. 27N

Multiplying eqn (25) by «’ and integrating gives

al+f(a=C (28)

fla) = (P=P)aa’ + ja,a* +2a0B,a 29

where C is a constant of integration. The phase portrait of eqn (28) is shown in Fig. 2. Only
the curves which go through the critical points F|, S and F, are compatible with the

assumption (27) of a constant amplitude in the large. The coordinates of the saddle point
S and of the foci F, and F, are given by

| 2

/
(&<

Fig. 2. Phase portrait of eqn (28).
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Fig. 3. The maximal load is reached when a loop disappears (case without localized imperfection).

[a) = 2[(P—-P)ra+xa+fa,] = 0. 30)

Let us begin with the case without localized imperfections. The solutions of eqn (25)
having constant amplitude correspond to the critical points £, S and F,. There are also
solutions corresponding to the paths AS and BS of Fig. 3. It is likely that only the solution
corresponding to the saddle point is stable. [f one increases the parameter P, the saddle
point and one of the foci coincide, which corresponds to 4 maximal point on the load-
amplitude curve (Fig. 3).

The presence of localized imperfections does not alter the saddle-saddle loop of the
phase portrait, but the interesting solutions of eqns (25) and (26) are found by intersection
of this loop with a straight line ¢’ = a’(0). So we find four solutions AS, BS, CS and DS,
but only BS (respectively CS) seems to be stable in the case of Fig. 4a (respectively Fig.
4b). When we increase the load P, the curves which go through S deform and the points
A, B, C and D move along the straight line " = a’ (0), so the maximal load is reached at

A 4
A/"\B c 0 2
(N 2
S L w— S
2 A B [of D
(@) For a(0) >0 () For al0) < 0

Fig. 4. Graphical discussion of eqns (25) and (26).
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the coincidence of 4 and B. At this level the left orbit is a tangent to the straight line
(ABCD) (see Fig. 5). The tangency condition gives

da’

PP 0. @31)
Using eqn (27), eqn (28) reads
a’+f(@—f(R)=0. (32)
This equation can be written as:
@’ +(a—R)’(3x:R* +a.aR+ loya* + 2, (P—P,)) = 0. (33)

As was explained, in the presence of localized imperfection, the maximal point (2, a,,) is
reached when the condition (31) holds, which leads to

of

5; (dp, Pn.ay)) =0 and a4, = a’(0). (34a,b)

Thus a,, corresponds to one of the two foci F, or F; [see eqn (30)] and eqn (34a) gives

Fi

é

VAN
/ \/ \ _

a(0)

Fig. 5. The maximal load is reached when an orbit is at a tangent to the straight line (case with
localized imperfection).
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(Pn.—P)2a,+2.a)+Ba, = 0. (35)
Because of the relation,
(P,—P)x,R+2,R*+B,a, =0, (36)

we get the maximal load P, as a function of the maximal amplitude a,, and of the coordinate
R of the saddle point S:

P, —P,. = Si(a;+amR+R=)
1

| p €0)]
3] 2 ay I 2 2 14y —l_
PM_P‘-a.a"+ﬂ'a, a, a, + x, R
where a,, and R are solutions of the two equations [using eqns (33) and (34b)]:
3} 2 P 2
(@n—R)(4n+R) = ;(a 0))°
: (38)
B
U,,,R(U,,,‘*"R) = —dy.
as

Finally, the maximal load P,, can be deduced by solving eqn (38) according to the sign of
a'(0).

4.1. First case: a’(0) < 0 (Fig. 6)
In this case, the localized imperfection is roughly in-phase with the distributed one,
and we have ¢,, > R > 0. Let

a, = kR. 39

Remark thatif & = 1, then g,, = R and we have the case without localized imperfection
[see eqn (38) and Fig. 3]. If k > 1, only the localized imperfection is significant.
Substituting for g, from eqn (39) into eqn (38) yields

44 dp

Fig. 6. The localized and the distributed imperfections are in-phase.
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R%k—U%b+D=£%d®DZ
2

(40a,b)
Rk(k+1) = %ao.
From this last equation, one gets, after dropping R
(k- I)J al/.\ , s
h(k) = 2 ———5 (@ (0)*. 1)

KPE+D" " “(Ba0)

In Fig. 7, we have plotted the graph of the function 4. One sees that eqn (41) always admits
a solution k > 1. Thus, for any a’(0) < 0, we can calculate the reduction of critical load in
a nearly closed form [using eqns (41), (40), (37) and (26)]:

— af? (v, 2)
k=h (2(ﬁ.ao)‘”(’2‘“')

B 1\
a,,,=kR and R=(&—zaom>

i3 l+k+k2

. yy _TETK
Pc—Pm = a[ (ﬂlao)/ [k(k+l)]2/3' (42)

Let us examine two important cases. If there is no localized imperfection, @, = 0 and then
da’(0) = 0. From eqn (40a), one gets kK = | and from eqn (42) we get the same formula as
in Koiter’s theory:

3 a)f?

P.—P,= 2773 ‘o‘(l—(ﬁlao)m- (43)

If only the localized imperfection is significant (i.e. k is large), eqns (41) and (42) lead to
the formula given in Amazigo er al. (1970) for a beam buckling problem:

NG
p.—p, =Y D;'—'al. (44)
]

o

Both localized and distributed imperfections must be taken into account in the range where
the imperfection ratio a,/a3’ is of the order of unity. Notice that this implies a localized
part of the imperfection much larger than the distributed part. In this case we propose the
formulae (42) that can be inverted numerically.

h(k){

Fig. 7. Graph of the function A.
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1] /

Fig. 8. The localized and distributed imperfections are out-of-phase.

4

4.2. Second case: a’(0) > 0 (Fig. 8)

Here we consider the case of an out-of-phase localized imperfection (Fig. 8). In this
case the maximal load can be reached by two different manners in the phase portrait. First,
the line a’ = a’(0) becomes a tangent to the saddle-saddle loop, as in the previous case.
This occurs when the instability is governed mainly by the localized imperfection. Second, the
saddle-saddle loop can shrink by coalescence of the saddle and of one focus. In this case,
the instability does not start in the region of the localized imperfection, which has no
influence on the maximal load, and the classical reduction formula (43) is applicable.

Let us compute the maximal load when the localized imperfection has an influence.
Let (a,, < 0, R > 0)

a4, = —kR, k>0. (45)

Substituting for «,, from eqn (45) into the tangency condition (38) yields

RYk+1)(k-1)= 5?—(41’(0))2

(46a,b)
3 . /jl
R k(k— l) = —dy.
L3
From eqn (46a), it is seen that k > 1. After dropping R, eqns (46) lead to
o (k+ n al? s s 2
ha(k) = k‘”(k-— l)l/] = 2(ﬂlao)4/3 (a’(0))°. 47

In Fig. 9, we display the graph of the function k,. For given h,(k), eqn (47) does not always
admit a solution, due to the existence of a minimum of A,(k). The localized imperfection
amplitude must meet the condition

hik) &
2

Tas [

Fig. 9. Graph of the function A,.
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¥ [y, ¥ 27
m(éa.) >24—Jz 10. (48)

[f the condition (48) does not hold, the instability is not due to the localized imperfection
and the reduction formula (43) yields the maximal load.

If the condition (48) holds, two values of k seem to be admissible (Fig. 9). Nevertheless,
the solutions k < 2 give maximal loads that are greater than the classical maximal load
from eqn (43) and therefore they do not correspond to admissible values. So the reduction

formulae are
1/3 2
k=hz_|(2(ﬂlaa2T<‘y2—la|)> and k> 2

ﬂlao
J—___._.
R " ak(k—1)
_p %pr Bl
P. P,,.—alR + a R (49)

5. APPLICATION TO BUCKLING OF CYLINDRICAL SHELLS UNDER EXTERNAL
PRESSURE

S.1. Calculation of the envelope equation

In this section we apply the latter formulae to calculate the reduction of the critical
pressure of a cylinder with a large Batdorf parameter Z and a not too large aspect ratio
L/R. in the presence of an initial imperfection localized close to y = 0 (Fig. 10) and/or a
modal imperfection. We begin by the computation of the coefficients of the envelope
equation (16) as well as the jump conditions (17).

We shall consider two shapes for the localized imperfections :

Localized imperfection : shape 1 (Fig. 11)
di(x, ) = d(x)d,\(y) = d(x)exp[=(y/c)*], ¢>0. (50)
Localized imperfection : shape 2 (Fig. 12)

di(x, ) = d(x)d\(y) = d(x)cos q.y exp [~ (y/c)’]. ¢>0. (51

n'|

Fig. 10. Shape of the localized imperfection.
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f S

2¢

Fig. 11. Localized imperfection (shape 1).

The modal imperfection has the following shape:

do(x,y) =d(x)cos q.y.

(52)

The real number ¢ characterizes the width of the region where the localized imperfection is
not too small. In what follows, it will be compared to the circumferential wavelength of the
buckling mode. For these examples the localized and distributed imperfections will be in-
phase. The reduction of the critical pressure is then given by formulae (42), (43) or (44).
To apply these formulac we have to compute «,, «,, f§; and y,, which are given by eqns
(18)—(21) and the solution of the ncutral stability problem (23). Here the linear operator is

given by :
[~ 0 0 0 0 1 0
0 0 0 0 0 |
0 0 0 0 0 0
0 0 0 0 0 0
L(P) = 0 0 1 0 0 0
0 0 0 I 0 0
o, PR

0 ﬁa, ) 0 0 O

Eh

=7

| "R 0 0 0 0 0

S oo -0 o0

o

0

S O -~ O o o

(=]

0

=

(53)

Then the well-known stability problem (23) is solved by the following eigenvector and

adjoint eigenvector:

Fig. 12. Localized imperfection (shape 2).
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‘U, = {p1. P2 —4*P1. —4°P2.iqp\, igp1, —ig’p1, —iq’p2}

D : (54a.b)
P(g) = E(«f*—n‘%)

6 . , .5 .
q 1 i i iq i
lU*= ’7 ‘_ "—._; 7_ ’9— 9‘——_ 7__ 55
v {p. P m‘p- q-p. qp. qu i P2 q,p.} (55)
where
, L?
n=1225. Z=4; 1—vi (56)

The number r in eqns (54) and (55) depends on the boundary conditions [see (61)]. The
functions p,(x) and p,(x) are solutions of the linear differential equations

(e
¢ = —q° | (x)— =50:p2(x) =0
D DR 57

Eh _,
q*pa(x)+ R %P (x) =0.

The boundary conditions of eqn (57) are deduced from eqns (5) or (6) :

1. If there is no axial restraint (N, = 0)

L a2 L _
Pn(‘.t ‘i)—a.‘ﬂx(i§>—0. (58)

2. If there is an axial restraint (v = 0)

p(25)=am(2%)=0 59)

One finds the critical functions [the critical buckling mode being w(x,y) =
2p,(x) cos 4.y}

p1(x) = a cos f—? + p cosh il

Eh 1 L (60a,b)
pa(x) = — X Eafpl(x)
with
r=1.505619 r=1
1 sin (rn/2) 1 sinh (rn/2) or 1 _
B=z= - , o=z = - a=3 B=0
2 sin (rn/2) +sinh (rn/2) 2 sin (rn/2) +sinh (rn/2)
6n

according to whether there is an axial restraint (u = 0) or not (N, = 0). From the neutral
stability curve (54b) we get the following critical values:
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g = 3nr

P.=P )—40 ;

c T (q‘ —3R‘!<
d*p D
-—(gq.) =16—. 2
dq® q.) 6R (62a—<)

Equations (54a) and (55) yield the following vectors:

Ue = {pi.p: =P\ — 4 P2 iq.P1.iq.p1. —iqlp\. —ig p:}

’U"-{p APy ip}
c vahqcz 2 qcz hqc "qcp"q;' 2 q‘,_z 1
.d 4 . . . 5
'vr = _'d_q‘Uq(qc) = {Oy;pz’ 2’qz‘pl9 —Zlqcp?.‘plv3p293qc.plv _qr.‘LPE} (63)

which permits us to get the following hermitian product :

24 L2
(V.. Ut =;1J P)pa(x) dx. (64)

¢ -L

The vector Gy, related to the distributed imperfection, is
'Gy(x, ) = {0. 0,0.0,0.0. " gd(x. ). o}.
As the distributed imperfection is modal [d(x) = 2p,(x) in (52)], we get
‘g, = {0,0,0, o,o.o.f‘l‘)qup,(x),o}.

By using eqns (63) and (64), formula (20) leads to the coefficient 4, related to the modal
imperfection :

B =5~ =44l (65)
The vector G, related to the localized imperfections, is
R 2
'Gi(x, y) = {0, 0,0,0,0,0, — %‘5— d;d,(x, y),O}.

By means of the Fourier transform defined in eqn (24), we get the Fourier transform of G,
with respect to y:

‘Gi(x,w) = {o, 0,0,0,0,0, P—Eﬁw’a’(x)z], (w).O}.

Thus
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<cl(_qc)vU:> = _3l

L2

P.R 2
ap(-9) j L, d@p:(x) dx. (66)

In order to simplify the computations we limit ourselves to d(x) = 2p,(x). With this choice,
formula (21) gives the coefficient y, [using eqns (62b), (64) and (66)] :

g

= _%qc?al(_qc)‘ (67

From eqn (62c). formula (18) gives the coefficient « :

SIE

(68)

Q| —

x =

The last coefficient ., = —a,b will be deduced from a classical bifurcation analysis. The
factor b has been computed in the Appendix for the two classes of boundary conditions
u=0and N, = 0. We obtain

Eh [z} h (7
b= ~34644 (%) or b= —10732 %(%) (69)
Eh 1 (n\ Eh 1l (=Y
%= 043305 0 o (7 ) or m=03415 5 (7 (70)

depending on whether there is an axial restraint (« = 0) or not (N, = 0).

For these two cases, the numerical coeflicients of the envelope equation (16) are given
by eqns (65). (68) and (70), while the coeflicient y, of the jump condition (17) is given by
cqn (67). Next, the reduction of critical pressure will be deduced from the analytical solution
of Section 4.

5.2. Reduction formulae for the critical pressure
We propose analytical formulae for the reduction of the critical buckling pressure of
cylindrical shells (Z = 500 and a not too large L/R) due to various types of imperfections.

5.2.1. Only modal imperfection. The classical formula (43) leads to the following
reduction:

173 23
Pe—Py = 2'33 (?‘) (&“o) - 23,, (=b)'"(Pao)™, an

which can be written as:

Pm (l _VZ)IIJ a, 23 ]

_i;c-= 1_475l‘—§T}J_ 71- if N,=0 7
Pm (l __VZ)I/J ao 2/3 . ( )
7): = | —53452——ZT/'i—-<-h—) if u=0.

These analytical formulae have been obtained using the approximate Donnell equations
(7). Comparison between the formulae (72), which were deduced from the inextensional
approximation, and the exact formulae, which were obtained numerically from eqns (1)

SAS 29:1-8
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Table t. Rjh = 100, ay/h = 0.2 the reduction of critical pressure as
a function of Z and boundary conditions : comparison of approxi-
mate formula with exact formula

z
215 858

B.C. Approximate  Exact Approximate  Exact
C3 0.748 0.834
s3 0.757 0.836
C4 0.737 0.747 0.834 0.834
S4 0.766 0.840
Cl 0.746 0.830
St 0.754 0.832
2 0.704 0.729 084 032
S2 0.752 0.837

and (71), are given in Table 1 for ao/h =0.2, R/h = 100, and for various boundary

conditions.

For large Z formulae (72) are sufficiently accurate in the case N, = 0 and they induce
at most an error of 3% in the case u = 0. A similar error is obtained for a smaller Z in the
case N, = 0. Furthermore, the convergence is good when Z increases.

5.2.2. Only localized imperfection. If there is only localized imperfection, the reduction
of critical pressure is given by eqn (44), which leads to:

T =1-2.3013 q,J( q()h', if N.=0

w
<
N1

=

(73)

~

P
»l=l—2.7462‘/ ! q‘.(],(—q‘.)%, if u=0.

: /z

Let us examine the two shapes given by eqns (50) and (51) for the localized imperfection.
For the first shape, by using the following Fourier transform

di(w)=c nexp(—(gch)), qu=(62)'“\/r7t{,

we get

P, a, .
P‘_ = l—le‘iII_ lf Nx=0
P (74)
m al .
P—c—l—dmw lr u—O
( 2)1/.
diy = 113152 —— exp<—|9238f(L)>
(75)

1/2 2
d,. = 16. 5683(——,—,3)—* Lexp(-2.8965ﬁ<%) )

For the second shape, the Fourier transform is
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2 2
d(w) = c? [exp (—(gqc(a”— 1)) >+exp(— (gq,(w—- n) )]

This leads to the following formulae :

a,

P .
F‘_- l‘d:y; if N‘=0

‘ (76)
P, a, .
—E—l—d:u-il— if u=0

(=) ¢ cY
dry = 5.6576 —r— 7| L+exp -1.6952/Z| -
an

(1-v)"? ¢ cY
dy, = 8.28415— 77— 7| L+exp ~11.586,/Z 7))l

In Fig. 13, we give the evolution of the slope of the straight lines defined by eqns (75)
and (76) as a function of ¢/L for various values of the geometrical parameter Z and for the
two classes of boundary conditions. It is seen that for large ¢/L. the second shape defined
by eqn (51) gencrally reduces the critical pressure more than the first shape defined by eqn
(50). As for the modal imperfection, the reduction is generally larger in the case of an axial
restraint (¢ = 0) than for no axial restraint (N, = 0).

5.2.3. Interuction of localized and modal imperfections. 1f both localized and distributed
imperfections are significant, the reduction of critical pressure is given by formulae (42).
For the purpose of comparison, we choose the second type of localized imperfection defined
by eqn (51). With this choice formulae (42) lead to the following reduction :

)13 2/3 42
P C(1=vY) (ao) I +k+k 78)

p. =170z \h) WA DIT

¢

where & satisfies the algebraic equation (K > 1)

(k-1)° i . : N\ @/m)?
i =00 -z (oo (o 2() i 0

d, =8.579 d, = 5.065
(52 = 11.586 or (52 = 7.695 (80)
o, = 2.828 4, =2.514

depending on whether there is an axial restraint (u = 0) or not (N, = 0). The interaction
between localized and modal imperfections depends on ¢/L and on the boundary conditions,
as shown in Fig. 14.

Figure 14a shows how the interaction between both types of imperfections significantly
reduces the buckling pressure. The case that is presented corresponds to a localized imper-
fection that is concentrated on half a buckle. Here we get the same reduction of 19%
with a much greater localized imperfection than with a modal imperfection (a,/A = 2 and
ao/h = 0.2). With both imperfections, the same reduction is obtained for ao/h = 0.12 and
a/h = 1. If the localized imperfection is significant on one or two buckles, the reduction is
more severe (Fig. 14b). Furthermore, the structure is more imperfection sensitive with the
boundary condition « = 0 than with N, = 0 (Fig. 14c).
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Fig. 13. Localized imperfection sensitivity coefficient as a function of the shape of the imperfection
(c/L, shape 1 or shape 2), of the geometry of the shell (Z) and of the boundary conditions for
v = 0.3. (a) For localized imperfection shape 1. (b) For localized imperfection shape 2.

6. CONCLUSION

We have discussed the imperfection sensitivity of elastic cylindrical shells under external
pressure. We used a simplified analysis (Abdelmoula and Potier-Ferry, 1991) derived from
Donnell equations, which limits the applications to a sufficiently large Batdorf parameter
Z and a not too large ratio L/R. In this case, the wavenumber is not too small, which
permits one to distinguish between distributed and localized imperfections. These two types
of imperfections were taken into account.

Closed form formulae (72), (74) and (76) were established for the reduction of buckling
pressure due to distributed or localized imperfections. The interaction between the two
types of imperfection can be accounted for by formulae (78) and (79). The reduction of
buckling pressure depends mainly on the Batdorf parameter, on the characteristics of the
imperfections and on the axial boundary conditions.

The classical post-buckling theory cannot be applied in the presence of localized
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{a}
]
Locatized imperfection ¢; /h:g,(s)
09
[
~
of
06
ai ' ’ s
Modal imperfection,ag/h
b 4 c) 3
Qa9 09

} a’ Without axiol restraint (N, =0)
a ~ < With axial restrant {u=0)
X a
Q6
s ai o5
Modal imperfection, ay/h Modal imperfection,as/h

Fig. 14, Reduction of the critical pressure in the presence of a modal imperfection (amplitude a,)

and of a localized imperfection (amplitude @) for Z = 500 and v = 0.3. (a) For ¢/L = 0.05 and no

axial restraint (N, = 0). (b) For a,/h = 1.0 and no axial restraint (N, = 0). (c) For a,/h = 1.0 and
¢/l = 0.1,

imperfection. A cellular bifurcation analysis is necessary in that respect. The general theory
that we recently established for this purpose (Damil and Potier-Ferry, 1991) makes this
type of study easier.
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APPENDIX

In this Appendix we compute the classical b factor of the standard bifurcation theory. The b factor is given
by (see for example Budiansky, 1974)

_ (Zu) -2,V
d<,
ar (u))

X0
b=——=

Ay

(A
2

where we have used the notation from Potier-Ferry (1987). The Reissner-type functional in eqn (8) can be rewritten
as:

L(Pou) = Z,(P,u)+Z4(P.u). (A2)
Here u = ‘{w, f}. The functional #,,(u) is homogencous of degree m. We also use the functional £,,(...) that

is homogeneous of degree 2 (resp. 1) with respect to its first (resp. second) arguments and that is the derivative
of Z,(.). Note that for the shell problem the functional 2, is zero and the buckling mode u, is given by

W, pi(x)cosgq,y
u, = =2 . A3
: (f.) (/':(-v)cos q, y) (A%
The vector v = ‘{w, [} is the solution of the variational problem (sce Poticr-Ferry, 1987):

=24, (V,0v) = ;-‘z’u(“h().'/) Y ov. (Ad)

This leads 1o the following problem for w(x, y) and f(x. §):

D+ PRI~ éaff = [w. fi}

(AS)
t ., i
- Zhi = = w, ]
Ehovj‘+ R(‘t” .[“I-“ll
Using the buckling mode given by (A3), the problem (AS) can be rewritten as
s T o . s 2 "
Do+ PR~ EDQ] = =2¢:[pip:+p\pr—2p'p1]cos 24.¥ =24 (p P2}
(A6)

l PO SO ) . 2 o
Ee’:/ + Eo’:w = =2¢p\ P\ ~ (P} cos 24,y + 4l (p])

where ()’ designates a differentiation with respect to x. The solution of (A6), which is orthogonal to the buckling
mode u,, is in the form

wix, y) = wo(x)+ ' ,(x)cos 2¢. ¥
Je.y) = fo(x)+ f2(x)cos 2.y (A7)

where wq, w,. fo. f; are solutions of

1
- zfo = =2%pip)
(A8)

| VPP
—Rwo=q:(p:)

and
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32 . | - . .
‘J“I:Dwz-k‘fz = =24.(p\p:+p\ P2 ~2p\ D)

Erd et 5% = 2420 Bi— ().
We have used the fact that
16¢!D~4¢3P.R = % ¢*D.
From (A8) we easily obtain

Fo(x) = 242 Rp, (x)p1(x)
Wo(x) = gl Rpi(x).

(A9)

(A10)

The problem (A9) must be solved with the appropriate boundary conditions that are deduced from eqns (5) or

(6). Then we get the two coefficients «,, and x,, in (Al):

d [/ Li1 xR
€, =2 ’[’(u.) = —R (@,w,) dx dy
dP 2 Jo ’

w2
= -—4qfnR‘J. pidx
-2
Ay = =47 3(V) =273, (u,.¥)

L2 R
B _J:L/z J:; Q@wi. il +[wi w1 /) dx dy.

If we introduce the following notation
250 = a3 +alo.

we got

12
afo = 41!R43J- . {2(p1p2) W0+ (P)"fo} dx
-2

L2
s {(P1p2+p Py =20\ P )W+ (Pipy —pi) [} dx.

aj, = 4"R‘I¢IJ'

By using (60b) and (A10), we obtain

L2

%, = —8nREhJ ot {(p.p1)"Pi+(p})p P} dx

N 4nEh (42 . e PR " I 2 v i\2
X3 = - P L/z{((Pl) +p.PT=2p\ PV + k(PP —p ) (W1 —297R(p\ P~ (PV) )} dx

c

where w,(x) is solution of the following problem:
n 4
ﬁ'?’+46‘(z) W = 2¢2R(p,p; —(p)?) + 329} R{(p1)* +p.pT— 27" P7}

gt =2,

The boundary conditions are:

|. Inthecase N, =0

(AlD)

(ALY)

(A13)

(Al3)

(Al15)

(A16)

(A7)

(AL8)

(Al19)
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w:(t§)= w;(i§)=o. (A20)
Case without axial restraint

In this case we get from (60) and (61) the identity

2. Inthecaseu =0

l 2
PP —(p7) =~ 3(%)

(A2])
i soo=27 = (%)
Y4l PriPr—4ap P =3\7/)"
The problem (A17}-(A19) is then in the form
- ny . oy
w,+4a'<z) Wy = l6q,zR(Z)
(A22)
) L LY of TY
(e8)-s o{s8)- el
One gets the solution:
Rq? onx anx . oRrx . onx
NP onx anx onRx . ONX 2
wa(x) 33 {I+A cosh L cos 3 + Bsinh I sin I } (A23)
where A and 8 are given by the boundary conditions. The result is
1/ J2E-F
A = '-k'irfji— (A24)
1/J2F+E
LA Al )
B=—Tprm (A23)
E = sinh (2¥*n) sin (2"*n) (A26)
F = cosh (2YV*n) cos (2¥*n). (A27)
Finally, we get after integration, the coefficients «,,, a,, and the factor b:
@ = —~iginR’L
n 3
ay, = —2n’REh Z) x 0.2683
%30 Eh =\
b= =—=—-10732—2{=]. 2
2y 1073 (I:R(L) (A28
Case with an axial restraint
In this case we get from eqns (60) and (61) the identity
" () = T ! —n? 2 . r_rt . r_n
P —(pY) —(L){ a4+ B+ 2af sin L.tsmh Lx}
(A29)
.2 - - R\
@) +ppT-20\pV =2 a (a +p%}.
The problem (A17)-(A19) is then in the form :
ra\* rm\! af  rmx rrx
imrdet( Y . = 1pf T 1,2, %P X i
Wi+ 4o (L) Wy 64q,R<L) {az +p°+ 3 cos 3 cosh L}
(A30)

. L . L
Wil k5] =Wy 15 = 0.

Onec gets the solution:
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LR@+8 arn
wi(x) =q;——(—,,T-ﬂ—l{l+A cosh—tcos x+Bsmh xsm t+

where 4 and B are given by the boundary conditions

ClD4-D2C2

~DiD4-D2D3
_C2D1-C1D3
" DID4-D2D3
24 uﬂ m e
Cl= (I—Z) ﬁ.cosh——cost—l
2 af rn m rn
VY - —_— —
2 =7 24 (smh cos 5 sin 3 cosh 2)

D1 = cosh (2¥*rm) cos (2¥*rn)
D2 =sinh 2V*rm) sin (2¥*rn)
D3 = sinh (2¥*rn) cos (27*rn) —cosh (2¥*rn) sin (2¥4rn)

D4 = sinh (2¥*rr) cos (2Y*rn) +cosh (2¥*rr) sin (2% *rr).
Then after integration we get the coefficients x,,, a,, and the factor &:

a,, = —0.3114g7R?L

3
Xy = — in’REh<%) % 0.6868

Ay Eh
-—{;:—-—34644 R(L)l
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mxcosh }

(A31)

(A32)

(A33)

(A34)



