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Abstract-The inftuence of distributed and/or localized imperfections on the buckling load is
analysed within the framework of cellular bifurcation theory. We propose analytical formulae for
the reduction of the critical buckling pressure of those shells in the presence of various types of
imperfections.

I. INTRODUCTION

The buckling analysis of thin cylindrical shells gave risc to a number of studies. These
structures arc frequently used in aeronautics and in mechanical. nuclear and civil engin­
eering. Several recent books are devoted to theoretical. numerical and experimental devel­
opments about perfect and imperfect thin cylindrical shells (Yamaki. 1984; Bushnell. 1985;
Arbocz el al.• 1987; Dubas and Van De Pite. 1987; Hui el al.• 1989).

The most important feature of curved shells is their high imperfection sensitivity. In
this paper. we propose closed form formulae to predict buckling of cylindrical shells under
external pressure in the presence of various types of imperfections.

The classical post-buckling theory (Koiter. 1945; Thompson and Hunt, 1973; Budi­
ansky, 1974; Potier-Ferry, 1987) can be used for imperfect structures if the number of
buckling modes is finite. Using the Lyapounov-Schmidt method. these theories lead to
algebraic amplitude equations. In the case of a single buckling mode of an unstable bifur­
cation and in the presence of an imperfection of amplitude ao, one gets a reduction of the
critical load which is proportional to a~l3.

For pressurized thin cylindrical shells the buckled states have a cellular shape in the
circumferential direction, with a rather large azimuthal wavenumber n. Thus many buckling
modes are nearly coincident and their non-linear interaction must be accounted for in an
imperfection sensitivity analysis. This interaction between different wavenumbers can lead
to spatial variation of the amplitude of the post-buckling pattern, which is modelled by a
complex differential equation. This equation is nowadays referred to as the Ginzburg­
Landau equation. It was first obtained in the study of convective rolls (Segel, 1969; Newell
and Whitehead, 1969). The effect of localized imperfections on the buckling load can be
analysed by using the Ginzburg-Landau equation (Amazigo el al., 1970; Amazigo and
Frazer, 1971; Damil and Potier-Ferry, 1991). In their study ofa beam buckling problem,
Amazigo el al. (1970) established that the amplitude of the buckling pattern has a dis­
continuous derivative in the region where the localized imperfection is significant. This
leads to a reduction of the critical load proportional to the amplitude at of the localized
imperfection.
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In a previous paper (Damil and Potier-Ferry. 1991) we established that any cellular
instability problem is governed by amplitude equations of the Ginzburg-Landau type. We
also showed how to account for distributed and,or localized imperfections. In particular,
we have extended to any cellular instability problem the localized imperfection analysis due
to Amazigo el al. (1970). Moreover. the coefficients of these equations and the cor­
responding discontinuities are obtained in closed form. which permits their analytical
computation.

This method will be used in this paper to calculate the maximal pressure of circular
cylindrical shells which have a large geometrical Batdorf parameter Z in the presence of
distributed and/or localized imperfections.

In order to get closed form formulae for the reduction of critical pressure. we shall use
an additional approximation. Indeed, the buckling modes of cylinders under external
pressure are nearly inextensional and are more rapidly varying in the circumferential
direction than in the axial direction. From these facts Abdelmoula and Potier-Ferry (1991)
established an approximate buckling analysis that is valid for sufficiently large values of
the Batdorf parameter. The present non-linear analysis will be carried out within this
approximation.

2. DONNELL EQUATIONS AND INEXTENSIONAL APPROXIMATION

We consider a circular cylindrical shell of radius R. length L and thickness II, which is
made of a homogeneous, isotropic elastic material with Young's modulus E and Poisson's
ratio v. It is subjected to an external normal pressure P. The coordinate system is taken as
shown in Fig. I and the displacement components will be denoted by II, I' and w.

Within Donnell theory and if the pre-buckling rotations are neglected, in the presence
of an initial displacement d(x. y), the transverse displacement w(x. y) and the additional
stress functionf(x, y) are solutions of

!
' I,. (a, 2) (a" ) .D.,1'1\'- RrJ;J+PR 22;w+O,.1\' -[w,f)+PR /;d+D;d -[d,ll =0

I ~. I,,~ l"J [---,1 J+ _. u IV = - [~ ~ - IV ,I]Ell R ' 2, ,

( I )

where ~ is cqual to I or 0 depending on the application of P on the whole of the boundary
or only on thc lateral part. Wc use the following notation:

•I
I

xlu I

P 8 I L

o v I

I y I
I
I

t

Fig. 1. Cylinder subjected to uniform e~ternal pressure.
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The stress functionJis related to the resultant stress by

3

Different boundary conditions at x = - L/2 and x = L/2 are considered (C is clamped and
5 is simply supported) :

CI:w=o.tw=U=V=O 51:w=0.;w=u=v=0

C2: w = o.tW = U= N.t.. = 0 52: w = o.;w = U= Nt.. = 0

C3: w = OtW = N.t = v = 0 53: W = o.;w = N" = v = 0

C4: W= o,w = N.t = Nt.. = 0 54: W= o;w = N" = Ntv = O.

The buckling mode of the pressurized cylindrical shell satisfies the linearized equations

(2)

(3)

The classical harmonic solutions ofeqn (3) have a slower variation in the axial direction
than in the circumferential direction for large geometrical Batdorf parameter
2 = ~L2/Rh (2 ~ 500). These buckling modes have a large circumferential wave­
number and are nearly inextensional, that is, the membrane buckling strain is weak. From
these facts, Abdelmoula and Potier-Ferry (1991) established an approximate buckling
analysis. This leads to neglect of %x with respect to %y, except in the coupling tenns
0; Jand o;w. Thus the mode and the buckling pressure can be approximated by the solutions
of:

(4)

This implies a loss of two boundary conditions and the existence of boundary layers.
Within this approximate analysis, it has been established that the boundary conditions for
the approximate system (4) can be stated as follows, according to the boundary conditions
(2) of the exact system:

I. If there is no axial restraint (N" = 0)

(5)
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.., If there is an axial restraint (u = 0)

n{± ~ ..~) =° and C,Il'( ± ~ ..~)::: 0. (6)

In the present non-linear analysis. this approximation will be used in order to get closed
form formulae for the reduction of critical pressure in the presence of imperfections. We
also neglect e/ex with respect to clGY in the non-linear equations (I). The post-buckling
behaviour is then governed by the approximate equations:

(7)

with the boundary conditions (5) or (6). We have neglected the higher order terms [d. fJ
and [d. w). The solutions of eqns (7) are extrema of the following Reissner-type functional:

(8)

where n = [- L12. L12] x [0. 21tR). This functional will be used to compute the imperfection
sensitivity factor h.

For the shells considered. the buckling mode has a cellular shape in the circumferential
direction. Furthermore. the wavenumber n is rather large provided that the ratio LIR is not
too large (otherwise Donnell shell theory would not be valid). Therefore classical bifurcation
theory is only relevant to get exactly periodic patterns. So we shall apply cellular bifurcation
theory in order to account for non-periodic imperfections and for non-periodic solutions.
To fit with the framework of cellular bifurcation theory. let us rewrite the post-buckling
problem (7) as follows:

du

d
- = F(P.u)+G(y)
y

where we have put

'{G(y)} = {O.o.o,o,o.o, - ~a;d(x.y).o}

(9)

(lOa)

(lOb)

(Wc)

where F(P, u) is a non-linear operator which depends on the axial variable x. The vector
G(y) accounts for initial imperfections, and '{u} denotes the transpose ofa column vector.
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3. CELLULAR INSTABILITIES
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3.1. Basic features
In order to apply the classical perturbed bifurcation theory (Koiter, 1945; Thompson

and Hunt, 1973; Budiansky, 1974; Potier-Ferry, 1987) it is required that, at the bifurcation
load P" the number of buckling modes is finite, in which case the Lyapounov-Schmidt
method leads to algebraic amplitude equations. In the case of a single buckling mode of an
unstable symmetric bifurcation and in the presence of an imperfection of amplitude ao, the
amplitude equation has the following form:

(II)

The numerical coefficients ~ II and~30 are related to the perfect structure, the loading and the
boundary conditions. Within the classical theory, a simple formula yields the imperfection
sensitivity factor b = -(1.30/(1.11 as a function of the buckling mode and of the potential
energy. The coefficient Pis somewhat like a projection of the imperfections on the buckling
mode. From (II), one finds a maximal load P", which is lower than P" the corresponding
reduction of the critical load being proportional to (00)2/3.

In the case of a cellular bifurcation. the algebraic equation is replaced by a complex
differential equation of the Ginzburg-Landau type (here without imperfection) :

(12)

which permits one to account for spatial variations of the amplitude of the post-buckling
patterns. The cocllicients ~ I and (1.~ are real and they are to be computed in each problem.
The inOuence of loc'llized imperfections on buckling load can also be studied by this
equation, as established by Amazigo et al. (1970).

3.2. General framework
In a previous paper (Damil and Potier-Ferry. 1991). we established that for any cellular

instability problem. the instability pattern is governed by amplitude equations of the
Ginzburg-Landau type with new terms that account for imperfections. In this method, the
perturbed Ginzburg-Landau equation and the jump condition due to localized imper­
fections are given by general formulae.

We have considered a general differential equation of the form:

(13)

where y lies in an interval whose length is large with respect to the wavelength and P is the
real control parameter (here the pressure). It is clear that Donnell equations (I) or approxi­
mate Donnell equations (7) can be written in this form [see eqn (9)].

In what follows. we distinguish between distributed imperfections and localized imper­
fections, the latter being significant in a small region of the shell, say one or two buckles.
We have denoted the amplitude of the distributed imperfection by ao, its shape by Go(Y).
the amplitude of the localized imperfection by a,. and its shape by G,(y).

Our general results can be expressed only in terms, first of the factor b of the non­
linear classical bifurcation theory and second of the lint-ar bifurcation problem. A cellular
bifurcation occurs when the linear part L(P) of the operator F has a double but not semi­
simple eigenvalue on the imaginary axis. We denote by U, and V, the corresponding
eigenvectors:
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L(PC>Uc = iqcUc

L(Pc)Vc = iqcVc+Uc.

Note that the applicability of this general theory requires a mirror symmetry y - - y.

3.3. Perturbed Gin=burg-Landau equation
We limited ourselves first to localized imperfection around y = 0, which means that

G/(y) decays for large y, and second to distributed imperfections that are nearly periodic
with the critical wavenumber

( 14)

where c.c. denotes the complex conjugate, the functions g,,(y) being slowly variable. Within
this framework, we established (Damil and Potier-Ferry. 1991) that the bifurcation equation
is the perturbed Ginzburg-Landau equation:

u(y) = a(y)Uc ei'lr v +c.c. + ...

Next the localized imperfection induces a jump in the complex amplitude:

[
da ] da + da
dy(O} = d/O )- dy(O-) = Ylal·

(15)

( 16)

( 17)

All the real coefticients 0: 17 0:2' YI and the function PI (y) are given by general explicit
formulae:

P ( ) = _~ (gl(y),U:>
I y 2 (V~, U:>

(18)

( 19)

(20)

(21 )

(22)

where (',.) is a hermitian product and U:is the kernel of the adjoint operator L* (Pc) +iqc'
From these formulae, it is clear that the coefficient (XI is only deduced from the neutral
stability curve P(q) that follows from the eigenvalue problem:

(23)

The function PI (y) is related to the linear stability problem (23) and to the distributed
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imperfection. The coefficient 'II is related to the linear stability problem (23) and to the
Fourier transform of the localized imperfection

(24)

and ~2 is related to the standard imperfection sensitivity factor b.

4. INTERACTION OF DISTRIBUTED AND LOCALIZED IMPERFECTIONS

In this section we calculate the reduction of the critical load in the presence of both
localized and distributed imperfections by solving the amplitude equation analytically.

In the case of a subcritical bifurcation. an imperfection transforms the bifurcation
point (PC' 0) into a limit point (Pm. am), Pm being lower than P,.. The maximal load Pm will
be deduced from the amplitude equation (16) together with the jump relation (17) at y = o.
Let us assume that fJ I is constant (as for instance with a modal imperfection). We seek only
symmetric solutions with respect to the y-axis so that a(y) is real. Hence a(y) satisfies the
following equations:

(25)

(26)

Hence eqns (25) and (26) govern the evolution of the amplitude a(y). We seek solutions
such that the amplitude is constant at infinity. Le. out of the region where the localized
imperfection is significant

a' (co) = O. a(co) = R.

Multiplying eqn (25) by a' and integrating gives

(27)

(28)

(29)

where C is a constant of integration. The phase portrait ofeqn (28) is shown in Fig. 2. Only
the curves which go through the critical points Flo Sand F2 are compatible with the
assumption (27) of a constant amplitude in the large. The coordinates of the saddle point
S and of the foci F. and F2 are given by

a·

Fig. 2. Phase portrait of eqn (28).
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A a
a

(a) P < P
m

a'

A
.F2. B

a

(0) p z p
m

D

p • p
m

p < P
m

a

Fig. 3. The maximalloau is reacheu when a loop uis;lppe.1IS (case without localizeu impcrf\."Ction).

(30)

Let us begin with the case without localized imperfections. The solutions of eqn (25)
having constant amplitude correspond to the critical points Fl. Sand F2• There are also
solutions corresponding to the paths AS and BS of Fig. 3. It is likely that only the solution
corresponding to the saddle point is stable. If one increases the parameter p. the saddle
point and one of the foci coincide. which corresponds to a maximal point on the load­
amplitude curve (Fig. 3).

The presence of localized imperfections does not alter the saddle-saddle loop of the
phase portrait. but the interesting solutions of eqns (25) and (26) are found by intersection
of this loop with a straight line a' = a' (0). So we find four solutions AS. BS, CS and DS,
but only BS (respectively CS) seems to be stable in the case of Fig. 4a (respectively Fig.
4b). When we increase the load P. the curves which go through S deform and the points
A, B, C and D move along the straight line a' = a' (0), so the maximal load is reached at

a'

o

a
A 8

a

(a) For a(O) ,0 (0) For aW) < 0

Fig. 4. Graphical diS\;ussion of eqns (25) and (26).
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the coincidence of A and B. At this level the left orbit is a tangent to the straight line
(ABeD) (see Fig. 5). The tangency condition gives

Using eqn (27), eqn (28) reads

This equation can be written as:

da'
da =O.

a'1+f(a)-f(R) = o.

(31)

(32)

(33)

As was explained, in the presence of localized imperfection, the maximal point (Pm, am) is
reached when the condition (31) holds. which leads to

of
-~ (am. Pm' all) = 0 and a',., = a' (0).
va

(34a,b)

Thus am corresponds to one of the two foci F. or F1 [sec eqn (30)] and eqn (34a) gives

a'

a

(a) p < p
m

a'

A B

p
(b) p. p

m

p.p
m

p < P
m

a(O)

Fig, 5. The maximal load is reached when an orbit is at a tangent to the straight line (case with
localized imperrection).
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Because of the relation,
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(35)

(36)

we get the maximal load Pm as a function of the maximal amplitude am and of the coordinate
R of the saddle point S:

(37)

where lim and R are solutions of the two equations [using eqns (33) and (34b)] :

(38)

Finally, the maximal load Pm can be deduced by solving eqn (38) according to the sign of
a'(O).

4.1. First cas!': a' (0) < 0 (Fig. 6)
In this case, the localized imperfection is roughly in-phase with the distributed one,

and we have am > R > O. Let

am = kR. (39)

Remark that ifk = I, then am = R and we have the case without localized imperfection
[see eqn (38) and Fig. 3]. If k » I, only the localized imperfection is significant.

Substituting for am from eqn (39) into eqn (38) yields

y

Fig. 6. The localized and the distributed imperfections arc in-phase.
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From this last equation, one gets, after dropping R

11

(40a,b)

(41)

In Fig. 7, we have plotted the graph of the function h. One sees that eqn (41) always admits
a solution k > I. Thus, for any a' (0) < 0, we can calculate the reduction of critical load in
a nearly closed form [using eqns (41), (40), (37) and (26)]:

(42)

Let us examine two important cases. If there is no localized imperfection, a. = 0 and then
0'(0) = O. From eqn (40a), one gets k = I and from eqn (42) we get the same formula as
in Koiter's theory:

(43)

If only the localized imperfection is significant (Le. k is large), eqns (41) and (42) lead to
the formula given in Amazigo et al. (1970) for a beam buckling problem:

(44)

Both localized and distributed imperfections must be taken into account in the range where
the imperfection ratio al/a~/l is of the order of unity. Notice that this implies a localized
part of the imperfection much larger than the distributed part. In this case we propose the
formulae (42) that can be inverted numerically.

Mid

k

Fig. 7. Graph of the function h.
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y

Fig. 8. The localized and distributed imperfections are out-of-phase.

4.2. Second case: a' (0) > 0 (Fig. 8)
Here we consider the case of an out-of-phase localized imperfection (Fig. 8). In this

case the maximal load can be reached by two different manners in the phase portrait. First,
the line a' == a' (0) becomes a tangent to the saddle-saddle loop, as in the previous case.
This occurs when the instability is governed mainly by the localized imperfection. Second, the
saddle-saddle loop can shrink by coalescence of the saddle and of one focus. In this case,
the instability does not start in the region of the localized imperfection, which has no
influence on the maximal load, and the classical reduction formula (43) is applicable.

Let us compute the maximal load when the localized imperfection has an influence.
Let (am < 0, R > 0)

am = -kR, k > O.

Substituting for am from eqn (45) into the tangency condition (38) yields

From eqn (46a), it is seen that k > I. After dropping R, eqns (46) lead to

(45)

(46a,b)

(47)

In Fig. 9, we display the graph of the function h2• For given h2(k), eqn (47) does not always
admit a solution, due to the existence of a minimum of h2(k). The localized imperfection
amplitude must meet the condition

hOd
2

27
4/3

2

2 k

Fig. 9. Graph of the function h~.
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(48)

If the condition (48) does not hold. the instability is not due to the localized imperfection
and the reduction formula (43) yields the maximal load.

If the condition (48) holds. two values ofk seem to be admissible (Fig. 9). Nevertheless.
the solutions k < 2 give maximal loads that are greater than the classical maximal load
from eqn (43) and therefore they do not correspond to admissible values. So the reduction
formulae are

k = h~· (2 (P~;:;413 (1; alY)
R J = p.ao

1X2k(k-l)

and k> 2

(49)

s. APPLICATION TO BUCKLING OF CYLINDRICAL SHELLS UNDER EXTERNAL
PRESSURE

5.1. Calculation of the envelope equation
In this section we apply the latter formulae to calculate the reduction of the critical

pressure of a cylinder with a large Batdorf parameter Z and a not too large aspect ratio
L/R. in the presence of an initial imperfection localized close to y = 0 (Fig. 10) and/or a
modal imperfection. We begin by the computation of the coefficients of the envelope
equation (16) as well as the jump conditions (17).

We shall consider two shapes for the localized imperfections:

Loca/i:ed imp('rfectic1fl: shape 1 (Fig. II)

d l (x. y) = d(x)d, (y) = d(x) exp [- (y/C)2]. c> O.

Loca/i:ed imperfection: shape 2 (Fig. 12)

(50)

(51 )

o
OJc

-- ....

Fig. 10. Shape of the localized imperfection.
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Fig. II. Localized imperfection (shape I).

y

The modal imperfection has the following shape:

do (x, y) = d(x) cos qcY. (52)

The real number c characterizes the width of the region where the localized imperfection is
not too small. In what follows, it will be compared to the circumferential wavelength of the
buckling mode. For these examples the localized and distributed imperfections will be in­
phase. The reduction of the critical pressure is then given by formulae (42), (43) or (44).
To apply these formulae we have to compute !X .. !X2, PI and YI' which are given by eqns
(18)-(21) and the solution of the neutral stability problem (23). Here the linear operator is
given by:

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I

L(P) = 0 0 I 0 0 0 0 0
(53)

0 0 0 I 0 0 0 0

0
I , PR

0 0 0DR o; D
0 0

_ Eh 02 0 0 0 0 0 0 0R .t

Then the well-known stability problem (23) is solved by the following eigenvector and
adjoint eigenvector:

y

Fig. 12. Localized imperfection (shape 2).
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(54a.b)

(55)

(56)

The number, in eqns (54) and (55) depends on the boundary conditions [see (61)]. The
functions PI (x) and pz (x) are solutions of the linear differential equations

(57)

The boundary conditions of eqn (57) are deduced from eqns (5) or (6):

I. If there is no axial restraint (N< = 0)

2. If there is an axial restraint (u = 0)

PI(±~) = O<PI( ±~) = o.

(58)

(59)

One finds the critical functions [the critical buckling mode being w(x. y) =
2PI(x) cos q"y]

with

(60a,b)

{

' = 1.505619

I sin (m/2)
{J = 2sin (ne/2) + sinh (m/2) ,

I sinh (m/2)
0:=-

2 sin (m/2) +sinh ('7[/2)
{
' = I

or j
0: = h fJ=O

(61 )

according to whether there is an axial restraint (u = 0) or not (Nx = 0). From the neutral
stability curve (54b) we get the following critical values:
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4 D ,
Pc = P(qJ = 3 /iq;:

d1p D
d

q
2 (qc) = 16 R. (62a-<:)

Equations (54a) and (55) yield the following vectors:

which permits us to get the following hermitian product:

The vector Go. related to the distributed imperfection, is

I { P,R , }Gu(x, y) = 0,0,0,0.0, O'if q,~"n(x,y), 0 .

As the distributed imperfection is modal [d(x) = 2p I (x) in (52)], we get

(63)

(64)

By using eqns (63) and (64), formula (20) leads to the coefficient fJ 1 related to the modal
imperfection:

P,.R I 2
PI = 8D = /Jq,.

The vector G I, related to the localized imperfections, is

(65)

By means of the Fourier transform defined in eqn (24), we get the Fourier transform of G I

with respect to y:

Thus
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(66)

In order to simplify the computations we limit ourselves to d(x) = 2pI (x). With this choice,
formula (21) gives the coefficient YI [using eqns (62b), (64) and (66)]:

(67)

From eqn (62c). formula (\8) gives the coefficient ctl:

(68)

The last coefficient ct= = -ct,b will be deduced from a classical bifurcation analysis. The
factor b has been computed in the Appendix for the two classes of boundary conditions
u = 0 and N, = O. We obtain

h = - 3.4644 q~~ (~y or b = - 1.0732 q~~ (~y

Eh I (1t)4 Eh I (1t)4
('.(! = 0.43305--i -- or ('.(2 = 0.13415 -"2 -

/) q,. l. D q.. L

(69)

(70)

depending on whether there is an axial restraint (u = 0) or not (Nx = 0).
For these two cases. the numerical coellicients of the envelope equation (16) are given

by eqns (65). (68) and (70), while the coellicient YI of the jump condition (17) is given by
eqn (67). Next, the reduction ofcritical pressure will be deduced from the analytical solution
of Section 4.

5.2. Reduction formulae for the critical pressure
We propose analytical formulae for the reduction of the critical buckling pressure of

cylindrical shells (2 ~ 500 and a not too large L/R) due to various types of imperfections.

5.2.1. Of/ly modal imperfection. The classical formula (43) leads to the following
reduction:

(71 )

which can be written as:

if Nx = 0

(72)

if u = O.

These analytical formulae have been obtained using the approximate Donnell equations
(7). Comparison between the formulae (72), which were deduced from the inextensional
approximation, and the exact formulae, which were obtained numerically from eqns (I)

$AS 29: 1-8
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Table I. Rih = 100. a.1h = 0.2; the reduction of critical pressure as
a function of Z and boundary conditions: comparison of approxi­

mate formula with exact formula

Z

B.C.

C3
53
C4
54

CI
51
C2
52

215

Approximate

0.737

0.704

Exact

0.748
0.757
0.747
0.766

0.746
0.754
0.749
0.752

858

Approximale

0.834

0.814

Exact

0.834
0.836
0.834
0.840

0.830
0.832
0.832
0.837

and (71), are given in Table I for ao/h = 0.2. R/h = 100. and for various boundary
conditions.

For large Z formulae (72) are sufficiently accurate in the case N. = 0 and they induce
at most an error of 3% in the case u = O. A similar error is obtained for a smaller Z in the
case N. = O. Furthermore. the convergence is good when Z increases.

5.2.2. Only loca/i:ed imperfection. If there is only localized imperfection. the reduction
of critical pressure is given by eqn (44). which leads to:

if N. =0

(73)

if u = O.

Let us examine the two shapes given by eqns (50) and (51) for the localized imperfection.
For the first shape. by using the following Fourier transform

J,(w) = cfiexp ( -Gq,·wy). qc = (6Z)'14v0c~,

we get

if u = 0

(74)

1
(l_v2)lll C ( (C)2)

diN = 11.3152 ZI /4 :L exp -1.9238JZ :L

(I-V
1
)II2 C ( (C)2)

diu = 16.5683 Z 114 :L exp - 2.8965JZ:L .

For the second shape. the Fourier transform is

(75)
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This leads to the following fonnulae :

t9

if N, == 0

if u == 0

(76)

In Fig. 13. we give the evolution of the slope of the straight lines defined by eqns (75)
and (76) as a function of c/L for various values of the geometrical parameter Z and for the
two classes of boundary conditions. It is seen that for large c/L. the second shape defined
by eqn (51) generally reduces the critical pressure more than the first shape defined byeqn
(50). As for the modal imperfection. the reduction is generally larger in the case of an axial
restraint (u == 0) than for no axial restraint (N, == 0).

5.2.3. Intertletion o/loClllizet/ ami mot/al imperfections. If both localized and distributed
imperfections arc signilicant. the reduction of critical pressure is given by formulae (42).
For the purpose ofcomparison. we choose the second type oflocalized imperfection defined
by eqn (51). With this choice formulae (42) lead to the following reduction:

where k satisfies the algebraic equation (k > I)

(k_I)J . 2 liJ 1/6(C)1[ (D r:::;(C)l)J (al/h)l
eiJ(k+I)'/3==<5I(l-V) Z T.. I+exp -lYZT.. (ao/h)4/J

[
DI == 8.579 [D I == 5.065

D2 == 11.586 or D1 == 7.695

DJ == 2.828 DJ == 2.514

(78)

(79)

(80)

depending on whether there is an axial restraint (u == 0) or not (N" == 0). The interaction
between localized and modal imperfections depends on c/L and on the boundary conditions.
as shown in Fig. 14.

Figure 14a shows how the interaction between both types of imperfections significantly
reduces the buckling pressure. The case that is presented corresponds to a localized imper­
fection that is concentrated on half a buckle. Here we get the same reduction of 19%
with a much greater localized imperfection than with a modal imperfection (al/h == 2 and
ao/h == 0.2). With both imperfections. the same reduction is obtained for ao/h == 0.12 and
al/h == I. If the localized imperfection is significant on one or two buckles, the reduction is
more severe (Fig. 14b). Furthennore, the structure is more imperfection sensitive with the
boundary condition u == 0 than with N., == 0 (Fig. 14c).
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Fig. 13. Localized imperfection sensitivity coefficient as a function of the shape of the imperfection
(efL, shape 1 or shape 2), of the geometry of the shell (2) and of the boundary conditions for

v = 0.3. (a) For localized imperfection shape 1. (b) For localized imperfection shape 2.

6. CONCLUSION

We have discussed the imperfection sensitivity ofelastic cylindrical shells under external
pressure. We used a simplified analysis (Abdelmoula and Potier-Ferry, 1991) derived from
Donnell equations, which limits the applications to a sufficiently large Batdorf parameter
Z and a not too large ratio L/R. In this case, the wavenumber is not too small, which
permits one to distinguish between distributed and localized imperfections. These two types
of imperfections were taken into account.

Closed form formulae (72), (74) and (76) were established for the reduction of buckling
pressure due to distributed or localized imperfections. The interaction between the two
types of imperfection can be accounted for by formulae (78) and (79). The reduction of
buckling pressure depends mainly on the Batdorf parameter, on the characteristics of the
imperfections and on the axial boundary conditions.

The classical post-buckling theory cannot be applied in the presence of localized
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(0)

Localized imperfection a,/h~.O
0.5
1.0
1.5

09 2.0

06

QI o.~

Modal ,mperfectlon.Qa/h

Ib) t Ie)

09

n:'
a.V ....
..... rfEa.

06

Modal Imperfectlon.ao/h Modal Imperfectton. Ooih

Fig. 14. Reduction of the critical pressure in the presence of a modal imperf•..'ction (amplitude all)
and of a localized imperfcction (amplitude a,) for Z '" 500 and v '" 0.3. (a) For clL '" 0.05 and no
axial restraint (N, '" 0). (b) For a,/Ir '" 1.0 and no axial restraint (N, '" 0). (c) For u,/h '" 1.0 and

clL'" 0.1.

imperfection. A cellular bifurcation analysis is necessary in that respect. The general theory
that we recently established for this purpose (Damil and Potier-Ferry, 1991) makes this
type of study easier.
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APPENDIX

In this Appendix we compute the classical b factor of the standard bifurcation theory. The b factor is given
by (see for example Budiansky, 1974)

(AI)

where we have used the notation from Potier· Ferry (1987). The Reissner-type functional in eqn (8) can be rewritten
as:

!t'(P.U) = !t'1(P,U)+!t',(P,u). (A:!)

Here u = '{ "',f}. The functional !t'M(U) is homogeneous of degr~'C m. We also usc the functional !t'1'(' .. ) that
is homogeneous of degree 2 (resp. I) with respect to its first (resp. st.'cond) arguments and that is the derivative
of !t' I( .). Note that for the shell problem the functional !t'. is zero and the buckling mode u, is given by

(
",,)_ ~'(X)COSq,y)

U, = - 2 .f, I(X) cos q,y

The vector v = '{ .... f} is the solution of the variational problem (sec Potier-Ferry. 19117):

This leads to the following problem for ..'(x. y) and ](x. y):

Using the buckling mode given by (A3), the problem (AS) can be rewritten as

(AJ)

(M)

(AS)

where ( )' designates a differentiation with respect to x. The solution of (A6), which is orthogonal to the buckling
mode u,. is in the form

where "'0. "'I' fo. fl arc solutions of:

and

"·(x. y) = w.(x)+ "'I(X) cos 2q,.y

f(x, y) = f.(x) + fl(X) cos 2q,y

{

- ~f~ = -2q;(PIPI)"

~w~ =q;(p;(

(A7)

(A8)



We have used the fact that

From (AS) we easily obtain
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{

32 'D' I/o 2qz(p0 0 2' ')Tq, Wz- Ji Z= - , IPZ+P,P2- P,P:

16 'J 1'0 2 z(p 0 (' )z)Eh q, z+Jiwz = q, ,P,- P, .

/O(x) = 2q;Rpl(x)pz(x)

Ii'o(x) = q; Rpi(x).

23

(A9)

(AIO)

The problem (A9) must be solved with the appropriate boundary conditions that are deduced from eqns (5) or
(6). Then we get the two coefficients !x" and !XlO in (AI):

iX.IO"" -42"z(v) "" 22'21(u"v)

f
'~Z f.2.1t

'" - (2(w,.f')w+(w"w,)!>dx dy.
-l./2 0

If we introduce the following notation

we get

f,·J2
iX~o '" 4rr.Rq; {2(p,pzrwo+(plr/0} d.t

-t12

By using (60b) and (AIO), we obtain

where wz(x) is solution of the following problem:

11' .. 27
•

The boundary conditions are:

I. In the case N. '" 0

(All)

(All)

(AI3)

(AI4)

(AI5)

(AI6)

(A 17)

(AI8)

(AI9)
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2. In the case u = 0

R. ASDELMOVLA et al.

(A20)

Case without a:r:ial restraint
In this case we get from (60) and (61) the identity

{
. 'l I (It)lp,p,-(P,) = - 4 L

.. 1 ._ ,.oo I It'
(p,) +p,p, -2p,p, = 2(L) .

The problem (AI7HAI9) is then in the form

One gets the solution:

Rql { Ult.r: UltX UltX Ultx}
"'l(X) = 2' I + A cosh T cos -c + B sinh T sin T

where II and B are given by the boundary conditions. The result is

E = sinh (2 '/'1t) sin (2 l /4 n)

Finally, we get after integration, the coclIicients IX". IXlII and the factor h:

Case with an axial restrai"t
In this case we get from eqns (60) and (61) the identity

{
p,p~ _(p',)l = (IY {-al+pl+2afJ sin I xsinh I x}

(p~)l +p,p'7-Zp',p7 = 2(~J {al +fJl}.

The problem (A 17)-(A 19) is then in the fonn :

{
.... ,(nt)' . . (nt)'{ . afJ MtX nt.\:}"'l+4u L Wl = 64q;R L IXl+fJ'+ gCOS Tcosh T

. ( L) .. ( L)Wl ± 2" = WI ± 2" = o.

One gets the solution:

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)
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(A31)

where: A and B are: given by the boundary conditions

{

_ CID4-D:!C2
A - OID4-0203

B = C201-CID3
OID4-0203

2° -xp ne ne
CI = (1_2') -x'+p' cosh 2 cOS 2- 1

2'° rxp (. ,.,C rrt . ne ne)
C2 = 1-2' rx'+P' smh 2cos2 -sm 2 cosh 2

01 = cosh (2 l /0ne) cos (2 l /0ne)

02 = sinh (2 J14ne) sin (2 l /0ne)

03 = sinh (2 l /0m) cos (2 l14 m) -cosh (2 l /0rlt) sin (2 liOm)

04 = sinh (2 l /0rrt) cos (2 lI 0ne) +cosh (2 l14rlt) sin (2 l /0m).

Then after integration we get the coefficients X," IX lO and the factor b:

IX" = -0.3\ 14q.'R'L

" (rt)'ot,"= -ilt REh L ><0.61\68

h = _ 1X2.~ .. _ 3.4644~~h (~)'.
IX" q,:R L

50'S 29:I-C

(A32)

(A33)

(A34)


